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Abstract

This paper reviewed many papers and provided more than 100 different available estimators for
estimating the ridge or shrinkage parameter & for the Gaussian linear regression model. These
estimators may be used for generalized linear regression models, namely, Poisson regression,
Logistic regression, Beta regression, Gamma regression, zero inflated Poisson regression,
negative binomial (NB) regression, zero inflated NB, Bell regression and inverse Gaussian
regression models among others. It is expected that this paper will bring a lot of attention among
the researchers and will be used as a reference paper in the area of ridge regression, which is
mainly used to solve the multicollinearity problems.

Keywords: Generalized Linear Regression; Linear Regression; OLS; MSE; Multicollinearity;
Ridge Regression; Shrinkage parameters.

1. Introduction

Multiple linear regression model plays an essential role in statistical inference and is used
extensively in business, environmental, industrial, medical, and social sciences. In linear
regression model, one usually assumes that the explanatory (or regressors) variables are
independent. However, in practice, there may be strong or near to strong linear relationships
among the explanatory variables. In that case the independence assumptions are no longer valid,
which causes the problem of multicollinearity. In the presence of multicollinearity, it is difficult
to estimate the unique effects of individual variables in the regression equation. Moreover, the
estimated regression coefficient may have wrong sign and will have unduly large sampling
variance, which affects both inference and prediction (Hoerl and Kennard, 1970). In literature,
there are various methods exist to solve the multicollinearity problem. Among them, “ridge
regression” proposed by Hoerl and Kennard (1970) is the most popular one which has much
usefulness in real life. They suggested the ridge regression (RR) as an alternative approach to
OLS. To apply RR, a researcher needs to determine the value of ridge or shrinkage parameter k.
Since 1970, the researchers are focusing on the estimation of k using different methods and
various conditions and then compare their results with the OLS estimator. There are many
research have been done for the estimation of ridge parameter or shrinkage parameter k for the
linear regression model. More on ridge regression model and estimation of shrinkage parameter
k, interested readers are refer to Hoerl and Kennard (1970), Marquardt (1970), Theobald (1974),
Hawkins (1975), Hoerl et al. (1975), McDonald and Galarneau (1975), Lawless and Wang

* Department of Mathematics and Statistics, Florida International University., Miami, FL. 33199, USA.
E-mail: kibriag@fiu.edu

To cite this paper

BM Golam Kibria (2022). More than hundred (100) estimators for estimating the shrinkage parameter in a linear and
generalized linear ridge regression models. Journal of Econometrics and Statistics. 2(2), 233-252.




234 Journal of Econometrics and Statistics

(1976), Hocking et al. (1976), Wahba et al. (1979), Gibbons (1981), Schaefer et al. (1984),
Delaney and Chaterjee (1986), Nomura (1988), Crouse et al. (1995), Firinguetti (1999), Kibria
(2003), Khalaf and Shukur (2005), Alkhamisi et al. (2006), Alkhamisi and Shukur (2006, 2007),
Batah et al. (2008), Muniz and Kibria (2009), Dorugade and Kashid (2010), Hassan (2010),
Massson et al. (2010), Muniz et al. (2012), Khalaf (2013), Khalaf et al. (2013), Asar et al.
(2014), Khalaf and Iguernane (2014), Dorugade (2014), Goktas and Seving (2016), Khalaf and
Iguern (2016), Bhat and Vidya(2016), Karaibrahimoglu, et al. (2016), Dorugade (2016), Lukman
et al. (2017), Asar and Genc (2017), Lukman and Olatunji (2018), Ertas (2018), Suhail and
Chand (2019), Suhail et al. (2019), Ali et al. (2021), Zubair and Adenomon (2021), Dar et al.
(2022), Karakoca (2022), Khalf (2022), and references therein. Below, we will provide a brief
descriptions about some generalized linear regression models.

Since, the linear regression model (LRM) is most popular and has been used extensively than
any other models, a lot of attention has been given to the work on the LRM in which the
response variable has the normal distribution. However, in reality, there are the situations, where
the data often comes from the other exponential family of distributions such as gamma, Poisson,
negative binomial, exponential, logistic, bell, inverse Gaussian and others instead of the normal
distribution. In such situations, the generalized linear model (GLM) is the best choice instead of
the linear regression model. When the dependent variable of the regression model is positively
skewed and mean is proportional to dispersion parameter, one uses the gamma regression model
(GRM). For generalized linear ridge regression model, we refer Segerstedt (1992) and for the
gamma ridge regression models, we refer to Lukman et al (2020, 2021), Amin et al. (2020a,
2020b), Amin et al (2022), Yasin et al. (2022), Lukman et al. (2022) and Akram et al. (2022)
and references therein.

The beta regression model (BRM) is introduced by Ferrari and Cribari-Neto (2004), which often
used when the dependent variable is in the form of rates or proportion. The primary assumption
of the BRM is that the dependent variable is distributed as a beta distribution. For instance, when
modelling the proportion of income spent on food, the poverty rate, the proportion of death from
Covid-19, and the proportion of surface covered by vegetation. In such situations, the BRM has
been used in applied research. The maximum likelihood estimator (MLE) is used to estimate the
unknown regression coefficient of the BRM. More on Beta ridge regression model, we refer
Qasim et al. (2021), Akram et al (2021) and Abonazel and Taha (2021) references therein.

Logistic regression model is a popular method to model binary data. This model (also known
as logit model) is frequently used for classification and predictive analytics. Logistic regression
estimates the probability of an event occurring, such as cure or not cure a disease, based on a
given dataset of independent variables. Since the independent variables may be correlated, the
ridge regression method can be used for Logistic regression model. More on logistic regression
and logistic ridge regression model, we refer our readers to Schaefer et al. (1984), Cessie and
Houwelingen (1991), Kibria et al. (2012), Mansson et al. (2014), William et al. (2019) among
others.

Count data regression is more appropriate than the linear regression model in studying the
occurrence rate per unit of time conditional on some covariates. For examples, the number of
patents visit emergency room, takeover bids, bank failures, and the number of accidents on a
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highway. Unless the mean of the counts is high, using the LSE can lead to significant
deficiencies. In such situations, the model for count data is the Poisson regression model. When
covariate for Poisson regression models are correlated, a Poisson ridge regression model is
preferred. There are much research on Poisson ridge regression model. Some of the notable are
Mansson and Ghazi (2011b), Kibria et al. (2015), KaCiranlar and Dawoud (2018), Qasim et al.
(2020), Lukman et al. (2021), Omer et al. (2021) and references therein.

The zero-inflated Poisson (ZIP) regression model introduced by Lambert (1992) is a popular
choice among researchers in applied economics when the dependent variable comes in the form
of non-negative integers or counts. The ZIP model usually used when the data contain an excess
amount of zeros. It is popular model because it accounts for overdispersion. For zero inflated
ridge regression estimator, we refer to Kibria et al. (2013), Omer (2021) and very recently Al-
Taweel and Algamal (2022) and references therein.

The important assumption of the Poisson regression model is that the conditional mean and
variance of the dependent or outcome variable are equal. In real life applications, the conditional
variance may exceed the conditional mean, which is commonly referred to as overdispersion.
Then the Poisson regression model should be replaced by the negative binomial (NB) regression
model, since NB regression incorporates an additional term to account for the excess variance.
More on negative Binomial regression and ridge regression models, we refer to Mansson (2012),
KaCiranlar and Dawoud (2018), Alobaidi et al. (2021), and very recently Rashad et al. (2021)
and references therein.

In some situations, a huge number of zeros may be included in the count data. In that situation,
the Zero-inflated negative binomial regression (ZINB) models are commonly used for count data
that show overdispersion and extra zeros. More on zero-inflated negative binomial model and
zero-inflated negative binomial ridge regression model, we refer to Cameron and Trivedi
(2013), Preisser (2016), Al-Taweel and Algamal (2020) and very recently Akram et al. (2022)
references therein.

The inverse Gaussian regression (IGR) model is a well-known model in the application when the
response variable positively skewed. More on inverse Gaussian regression model we refer Folks
et al. (1981), Bhattacharyya and Fries (1982), Chaubey (2002) and Heinzl and Mittlbock
(2002) among others. However, for the ridge regression model under the inverse Gaussian model
is consider by Algamal (2019), Amin et a. (2021a) and very recently Amin et al. (2021) and
references therein.

The Bell regression model (BRM) is generally applied in a situations, when the response variable
having observed counts that follows the Bell distribution (Lemonte at al. 2020). More on the Bell
ridge regression model, we refer our readers to Amin et al. (2021b) and references therein.

We have reviewed several regression models, namely, Linear regression model, Gamma
regression model, Poisson regression model, Logistic regression model, Zero inflated Poisson
regression model, Negative binomial regression model, Zero inflated NB regression model, Bell
and finally Inrese Gaussian ridge regression models. However, in this paper we will consider the
case for linear regression model only. Since, the estimation of the ridge or shrinkage parameter is
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an important issue for the ridge regression model, the objective of the paper is to review some
papers since Hoerl and Kennar (1970) and provided at least 100 different k estimators. The
organization of this paper is as follows: Statistical models are outlined in section 2. 108 different
ridge parameters (between 1970 to 2022) are given in section 3. This paper ends up with some
concluding remarks in section 4.

2. Statistical Models

To describe the ridge regression models, we consider the following multiple linear regression
model

y=Xpte 2.1

where y is an nx1 response vector of observations on the dependent variable, X be the (nxp)
design matrix of rank p, B is an (px1) vector of unknown parameters to be estimated, and e an
(nx1) vector of unobservable errors with 0 mean and variance 6°. The regression parameters
vector, A is mostly estimated using the method of Least Squares (LS) when there is no violation
of any of the classical linear regression Model (CLRM) assumptions (Hoerl and Kennard 1970).
The ordinary least squares (OLS) of g is defined as follows:

Brs = (X'X)71X'y (2.2)

with covariance matrix, Cov(f) = o?(X'X)™". It can be seen that both § and Cov(f) are
heavily dependent on characteristics of the matrix X'X.

The OLS estimator is an unbiased and has minimum variance among the class of all such
unbiased linear estimator. In a multiple linear regression model, it is generally assumed that
predictors must be uncorrelated with each other. However, in many practical situations (e.g.
engineering in particular (Hoerl and Kennard, 1970)), often find that the regressors are nearly
dependent. In that case X'X matrix becomes ill conditioned (i.e. det(X'X)~=0). If X'X is ill
conditioned, then /3 is sensitive to a number of errors i.e. regression coefficients may have wrong
signs with large, the sampling variance. In this situation the meaningful statistical inference
about the regression coefficients becomes very difficult for practitioners. To overcome this
problem, (Hoerl and Kennard 1970) proposed ridge regression estimator (RRE) which can be

obtained by augmenting equation (2.1) with 0= K" P+& and consequently applying the
method of least squares to estimate 5. Thus, the ridge estimator of § is obtained as:

Be=XX+kDX'y ;k>0 (2.5)

where k is the shrinkage or biasing parameter. This is known as the ridge regression estimator
(RRE). The RRE provides biased but smaller variance than the OLS estimator (Hoerl and
Kennard 1970). From (2.5), we observe that as k — 0, 8, = B, and as k — oo, B}, = 0.
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Now, we consider the canonical form of model (2.1) as follows
Y =X"a+e¢, (2.6)

where X* = XP and a = (al, a,, a3 ...,ap) = P'f, P is an orthogonal matrix such that P'P = I,
and P'X'XP = A, where A = diag (A1, 1, i Ap) is the diagonal matrix consisting of the

eigen values of X' X. Then, the ordinary least square (OLS) and the generalized ridge regression
(GRR) estimators in canonical form are respectively given as follows:
as = XXt x'y, (2.7)
@pr = (X*'X*+K)~ 1X*' Y, (2.8)
where K = diag(kl, ...,kp),kl- >0i=12,..,p.

The MSE of OLS and generalized GRR estimator in terms of eigen values and ridge parameter k&
can be written respectively as follows:

14
1
MSE (&,5) = o2 Z e (2.9)

MSE (@) = 0 Z (/1 — )2 + Z Gk )2 (2.10)

The first term on the right of (2.10) is the variance and second term is the square of the bias
introduced by the ridge regression estimator (RRE). This second term will be zero when k=0,
however, it is a monotonic increasing function of k. On the other hand, the variance is a
monotonic decreasing function of k. Thus, when k increases, the variance decrease and bias
increase. Hoerl and Kennard (1970) shows that there always exists a value of k>0, for which
MSE of RRE is smaller than the mean square error of OLS estimator.

3. Different Shrinkage Estimators

The parameter k is known as the “biased” or “ridge” or “shrinkage” parameter and it must be
estimated using real data. Most of recent efforts in the area of multicollinearity and ridge

regression estimators have concentrated on estimating value of k&. We will review many statistical

methodology used to analyze the estimation of £ in this section.

For the linear regression model, Hoerl and Kennard (1970) obtained the optimal values of k; as
the ratio of estimated error variance (62) and i*"estimate of & using OLS as follows:
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~ 67
ki=—5 ;i=123,...p (2.11)
L
where 6% = ¥7_, & /(n — p).

To determine a single value for k, Hoerl and Kennard (1970) suggested the following estimator:
kug = a;n_x (2.12)

where &g, = max(al, ay, a3 ..., ap). The estimator in (2.12) will give smaller MSEs than the
OLS estimator. Hoerl et al. (1975) consider another estimator by taking the harmonic mean of k;
values in (2011). Kibria (2003) proposed estimators of k by using the arithmetic, geometric
means and median of k;j values in (2.11). This paper follows the notation of Hoerl and Kennard
(1970). Different researchers estimated the value of k£ in different ways. In this section, we will
summarize some existing methods of estimating ridge parameter k& and their corresponding
references which are provided in Table 2.1.

Table 2.1: Different authors and their corresponding proposed ridge or shrinkage
estimators
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SL No Authors Estimators
1. Hoerl and Kennard (1970) 6?2
k1 = &2
max
2. Theobald (1974) f 267
2= s
B'B
3. Hoerl at al. (1975) _ pa’_ pa?
P BB Sl
4. McDonald and Galarneau Choose a value of k, (say k4), such that
(1975). L "1
B'be=FB-6") =
i=1 "'
5. Lawless and Wang (1976) p&? p6?
5 — ~7 7 = ——
a'xX'xe Z?:l Aol
6. Hocking et al. (1976) 2 3P (h@)?
6 = N
(Zi:1 Aiai)
7. Golub, Heath and Wahba y'[I —HU)]y
(1979) ke = 72
n[Det(l, — H(k))]"/
where H(k) = X(X"X + kI,,)X"
8. Schaefer et al. (1984) 1
ks = =
max
9. Delaney and Chatterjee (1986) | kg = min(MSEP (kg)),
v . .
where MSEP(kg) = w
=11
For detailed see Delaney and Chatterjee (1986).
10. | Nomura (1988) p6?
klO -
{ ‘.
2
P 4
Zi:lI : PN H
[1+ i+ (5h) |
11. Crouse et al. (1995), 62
(1995) (2 Sifa>h
ki, = { aAZ—
po .
kT otherwise
where a = (B —]) ([? —]),
b= 6%tr(X'X)'and | = (%Zfﬂ Bi)lp
12. | Firinguetti (1999) . 2; 62
YT (n—p-1)8%+ A ap)
13. | Kibria (2003) ) 52
13 = Y
(I, )~
14. | Kibria (2003) 52
k4 = median 7z
i
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15. | Kibria (2003) 1 Z”: 52
15 ) L &LZ
16. | Khalaf and Shukur (2005) o Amax 62
1 ((Tl —p—1)6% + Apax ﬁrznax)
17. | Alkhamisi et al. (2006) . ( A; 62 )
= max ~
7 ((n—p—1)6% + 4 B7)
18. | Alkhamisi et al. (2006) ) . ( 2,62 )
= median ~
i (n—p—1)62 + 4 B2
19. | Alkhamisi et al. (2006) oo = 121’ < A; 62 )
P pLis\(n—p - 132 + 4 )
20. | Alkhamisi and Shukur (2007) o = 62 1
% ﬁmax mux
21. Alkhamisi and Shukur (2007) k
21 = max /1
22. Alkhamisi and Shukur (2007) Py 1
kzz == <A_ _>
ﬁ
23. Alkhamisi and Shukur (2007) 6% 1
k,3 = Median B /1—
24, Alkhamisi and Shukur (2007) K 4 1
2= Z? 1 Bl /1max
25. | Alkhamisi and Shukur (2007) f pé? 1
D A
26. | Batah et al. (2008) p6?
k26 = v [ &\2
=1+ (1 + 4 ((22/62))1/2)
27. Muniz and Kibria (2009)
1
k,; = max
62/a?
28. | Muniz and Kibria (2009) . ( 52 A2>
28 =max | |62/@;
29. | Muniz and Kibria (2009) / . \1/1’
1
=] ]
\t Joat)
30. | Muniz and Kibria (2009) /v
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Amax 6?
((n—P - 1)62 +Amax a

31. Muniz and Kibria (2009)
k31 = median
\[7 wz/
32. Muniz and Kibria (2009) ) S
ks, = median| [6%/&;
33. Muniz and Kibria (2009) 52 1/p
(1_[ (n— p)a2 + 4 &2)
34. | Batah and Gore (2009) p 62
ks, = ~ 2
P a;
i= 172
et eata " aa’
454 67 262
35. Dorugade and Kashid (2010) pé62 1
kys =max| 0, ——F——~—
a'a n(VIF;)
max
VIF; = —;RZ is the variance inflation factor of jth regressor.
j
36. | Al Hassan (2010) > ua)? 1
36 =
(=, (na”)” e
37. Mansson, Shukur and Kibria \
(2010) 1
Koy =
37 max Amax (,Z\I.Z
((n—P - 1)62 +Amax &12)
38. Mansson, Shukur and Kibria
(2010) 1
ksg = medi
35 = median | s &2
((Tl -P- 1)62 + Amax &LZ)
39. Muniz et al. (2012) 1/p
o~ ([ Te=rs7a9)
40. | Muniz et al. (2012) / \
k max ! ! |
40 — | |
Amax 6-2
& ((n_p_1)62+/1max )/
41. Muniz et al. (2012)
k41 = max \/
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42. | Muniz et al. (2012) / \1/1’
P
o =]
| —~ |
i=1 Amax 62
& (n—p —1)62 + dpax @2) /
43. Muniz et al. (2012) p
o = 1—[ Amax O
3 ((n p— 1)02 + Amax AZ)
44. | Muniz et al. (2012) / \
k44 = median I ! !
44 = I |
Amax 6-2
((n -pb- 1)62 + Amax &12)
45. | Khalaf (2013) o = Amax + Amin) { pé? }
“ =, LR
46. | Khalaf (2013) . (max + Aomin) Amax02
7 230 (Bl (0 = 0)67 A Ba
47. | Khalaf, Mansson and Shukur | o — gy (L),
(2013) A—
max O
where m; = \/ (=P~ 10+ Amax @)
48. Khalaf, Mansson and Shukur kag = max( /mi)
(2013) yo——
where m; = \/ (=P~ 10+ Amax @)
49. | Khalaf, Mansson and Shukur . 1/p
(2013) ko= ([ /
49 =
i=1 /YT
50. Khalaf, Mansson and Shukur P 1/p
(2013) kso = <Hﬁ>
i=1
51. Khalaf, Mansson and Shukur . 1
(2013) k51 = median \/E
hi _ Amax g2
WHETE T = | (1 =p=1)0" +Amax @D
52. | Asaretal (2014) e — p26?
" B X, @7
53. | Asaretal. (2014) p36?
kss =

3 P 52
Anax Zi=1 ai
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54. | Asar et al. (2014) f p6?
54 = 713 N
An{ax ?:1 al
55. | Asaretal. (2014) . p6?
55 = 1/3 2
(Z 1\/—) i= 1al
56. Asar et al. (2014) "
56 —
\/_ZL 1 l
57. Khalaf and Iguernane (2014) 62 p
ks; =\ ==+ 2
2 \@hax i=1 %i
58. Khalaf and Iguernane (2014)
ksg
59. Dorugade (2014)
60. Dorugade (2014)
keo =
61. Dorugade (2014) "
61
62. Doruge (2014) )
k¢, = Median
63. Doruge (2014) i
63 =
64. Goktas and Seving (2016)
key =
65. Goktas and Seving (2016) o =
65 — [ A~ \\2
(median( &;))?
66. Khalaf and Iguern (2016) 1
k66 — max g _
((n —p =162 + Anax Bihax)
67. | Bhat and Vidya(2016) p6? 1
k67 = D ’\2 +
i= 1 maxz
68. Bhat and Vidya(2016) i p6? +
68 — =
f:l aiz 2\/ Amax//lmin
69. Karaibrahimoglu, et al. (2016) = \/5pé?
* Amax Z?:l d\LZ
70. | Karaibrahimoglu, et al. (2016) p6?

ko =

/ P 52
Amax i=1 ai




244 Journal of Econometrics and Statistics

71. | Karaibrahimoglu, et al. (2016) B 2p6?
71— 1/4 A
LAY e
72. | Karaibrahimoglu, et al. (2016) f 2p6?
72 =
f:l A ?:1 &LZ
73. Dorugade (2016) k.53 =0,
where 6 = |¥7_, ¢ /(n—p).
74. Lukman et al. (2017) 262
kra = Amaxmax(&-z)
75. | Lukman et al. (2017) \
kers = maX| / 262 |
maxa }
76. Lukman et al. (2017) 202 1
S o
76 Amax p i=1 alz
77. | Lukman et al. (2017) 2p6?
ky7 = P &
max 2aj=1 &
78. | Lukman et al. (2017) 262
k7g = PR
/‘{max (Hi:l a; )
79. | Lukman et al. (2017) ) 262
k median | ———<
lmax (ai )
80. | Lukman et al. (2017) 2672
kgo =
P Aimax(@?)
81. Lukman et al. (2017)
267
kg, = max| ——
\ ?=1 Ai (&LZ)}
82. Lukman et al. (2017) 2452 P 1
k82 = 72 =2
/Z?zl)li =Y
83. | Lukman et al. (2017) 2po?
kg3 = —
?:1 A ?:1 &iz
84. | Lukman et al. (2017) k 2po?
84 =
~2\1/P
p—1 Ai (H?:l aiz)
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85. Lukman et al. (2017)
. 262
kgs = median | —————
\ Zg;lli a\lZ/
86. Asar and Genc (2017) 1 p 52
Keo=7 ) |z
8 p = Alalz
87. | Asar and Genc (2017) P - i/p
6
=\ | | 7z
87 L llalz
88. Asar and Genc (2017) ~2
o
kgg = medi —
gg = median na?
89. Asar and Genc (2017) 52
kgo = max na?
90. Asar and Genc (2017) ~
kgg = medi 1/ |—
90 = median| 1/ L4
91. Asar and Gence (2017) ~2
o
kg =max| 1/ N
92. Asar and Genc (2017) 1 p 52
ke == > |1/ |72
27p — Maf
93. Asar and Genc (2017) p 182
la'
ko3 = P/Z 6ZL
i=1
94. Lukman and Olatunji (2018) kos = pé
95. Ertas (2018) Koy = p
i=1
[Aic?l?az + 6% + 62
96. Ertas (2018
(2018) 1 |L@iG%+ 6%+ 67
kg = — ~
% D &i=1 a?
97. | Suhail and Chand (2019) ko7 = {k(;y}, such that P(k < KQ,) = y{k(;}
98. Suhail and Chand (2019
( ) Amax(&iz)o.soa'z + 64 + 6'2
kog = —
% (aiz)o.so
(&%) .50 implied 50" percentile of (&7)
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99. Suhail et al. (2019
( ) Amax(&iz)oisaz +46*+ 6'2
k = = )
* ((liz )o.75
(&%) .75 implied 75" percentile of (&)
100. | Zubair and Adenomon (2021) Az
o
kigo = min 52
52 , 6%
267 + o
101. | Dar et al. (2022) Amax
ko1 = 6%p™ Amin
where m is an arbitrary constant, A,,,, and 4,,;, are the largest
and the smallest eigenvalues of X'X matrix respectively.
102. | Karakoca (2022) kigy =
argmin (n- p)d* i K z kz
i
gmineo) (=PI 2\ 1 +k) 0 +k) 7
103. | Khalf (2022) 52 2
k
103 = amax (Amax + lmin)
104. | Kibria (2022, d 1
ibria ( proposed) Kios = GM (ﬂl L)
where GM stands for geometric mean.
105. | Kibria (2022 d 1
ibria ( , proposed) Kyos = HM (ﬁl _)’
where HM stands for harmonic mean.
106. | Kibria (2022, proposed) 62 1
ki0s = Median| >+ —
pt A
107. | Kibria (2022, proposed) <A2 1)
kqi97 = max —
ﬁl A
where max stands for maximum.
108. | Kibria (2022, proposed) (6% 1
kigg =min| >+ —
B A
where min stands for minimum.

4. Some Concluding Remarks

This paper considers more than 100 different estimators for the shrinkage parameter of the ridge
regression models, which have been published since 1970 (Hoerl and Kennard 1970), when the
errors of the model are normally distributed. These estimators may be used for the other ridge

regression models, such as,

Poisson, Zero inflated Poisson, Gamma, Logistic, Negative

binomial, Zero inflated negative Binomial, Bell, inverse Gaussian regression, semi-parametric
regression models among others. This paper made an attempt to review most possible published
papers until now on the estimation of ridge or shrinkage parameter k for the linear regression
model. Since the choice of k& depends on the particular sample under investigation and may vary
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from sample to sample, the properties associated with ridge regression for fixed £ may not hold.
We just reported more than 100 different shrinkage estimators. Different researchers have
proposed different estimators at different times and compared their performances under different
simulation conditions, which is not comparable as a whole. Therefore, it will be interesting if we
compare them under the same simulation conditions and proposed some good estimators for the
practitioners. Such possibility is under consideration in a separate paper. We expect that this
paper will bring a lot of attention among the researchers and will be a reference paper in the area
of ridge regression.

Dedications: B M Golam Kibria wises to dedicate this paper to Bangabandhu Sheikh Mujibur
Rahman, Father of the Nation, for his invaluable sacrifice, great leadership, and the commitment
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